Paul Pietroski
Research Expertise
Philosophy of Language
Semantics
Paul Pietroski (PhD, MIT) is Professor of Philosophy and Linguistics. His main research interests lie at the intersection of these fields. Recently, his work has focused on how grammatical structure is related to logical form, how meaning is related to truth, and how human concepts are related to linguistic understanding.
Publications
Individuals versus ensembles and "each" versus "every": Linguistic framing affects performance in a change detection task
More evidence that "every" but not "each" evokes ensemble representations.
Though each and every are both distributive universal quantifiers, a common theme in linguistic and psycholinguistic investigations into them has been that each is somehow more individualistic than every. We offer a novel explanation for this generalization: each has a first-order meaning which serves as an internalized instruction to cognition to build a thought that calls for representing the (restricted) domain as a series of individuals; by contrast, every has a second-order meaning which serves as an instruction to build a thought that calls for grouping the domain. In support of this view, we show that these distinct meanings invite the use of distinct verification strategies, using a novel paradigm. In two experiments, participants who had been asked to verify sentences like each/every circle is green were subsequently given a change detection task. Those who evaluated each-sentences were better able to detect the change, suggesting they encoded the individual circles' colors to a greater degree. Taken together with past work demonstrating that participants recall group properties after evaluating sentences with every better than after evaluating sentences with each, these results support the hypothesis that each and every call for treating the individuals that constitute their domain differently: as independent individuals (each) or as members of an ensemble collection (every). We situate our findings within a conception of linguistic meanings as instructions for thought building, on which the format of the resulting thought has consequences for how meanings interface with non-linguistic cognition.
Psycholinguistic evidence for restricted quantification
Determiners express restricted quantifiers and not relations between sets.
Quantificational determiners are often said to be devices for expressing relations. For example, the meaning of every is standardly described as the inclusion relation, with a sentence like every frog is green meaning roughly that the green things include the frogs. Here, we consider an older, non-relational alternative: determiners are tools for creating restricted quantifiers. On this view, determiners specify how many elements of a restricted domain (e.g., the frogs) satisfy a given condition (e.g., being green). One important difference concerns how the determiner treats its two grammatical arguments. On the relational view, the arguments are on a logical par as independent terms that specify the two relata. But on the restricted view, the arguments play distinct logical roles: specifying the limited domain versus supplying an additional condition on domain entities. We present psycholinguistic evidence suggesting that the restricted view better describes what speakers know when they know the meaning of a determiner. In particular, we find that when asked to evaluate sentences of the form every F is G, participants mentally group the Fs but not the Gs. Moreover, participants forego representing the group defined by the intersection of F and G. This tells against the idea that speakers understand every F is G as implying that the Fs bear relation (e.g., inclusion) to a second group.
Read More about Psycholinguistic evidence for restricted quantification
The mental representation of universal quantifers
On the psychological representations that give the meanings of "every" and "each".
A sentence like every circle is blue might be understood in terms of individuals and their properties (e.g., for each thing that is a circle, it is blue) or in terms of a relation between groups (e.g., the blue things include the circles). Relatedly, theorists can specify the contents of universally quantified sentences in first-order or second-order terms. We offer new evidence that this logical first-order vs. second-order distinction corresponds to a psychologically robust individual vs. group distinction that has behavioral repercussions. Participants were shown displays of dots and asked to evaluate sentences with each, every, or all combined with a predicate (e.g., big dot). We find that participants are better at estimating how many things the predicate applied to after evaluating sentences in which universal quantification is indicated with every or all, as opposed to each. We argue that every and all are understood in second-order terms that encourage group representation, while each is understood in first-order terms that encourage individual representation. Since the sentences that participants evaluate are truth-conditionally equivalent, our results also bear on questions concerning how meanings are related to truth-conditions.
Read More about The mental representation of universal quantifers
Linguistic meanings as cognitive instructions
"More" and "most" do not encode the same sorts of comparison.
Natural languages like English connect pronunciations with meanings. Linguistic pronunciations can be described in ways that relate them to our motor system (e.g., to the movement of our lips and tongue). But how do linguistic meanings relate to our nonlinguistic cognitive systems? As a case study, we defend an explicit proposal about the meaning of most by comparing it to the closely related more: whereas more expresses a comparison between two independent subsets, most expresses a subset–superset comparison. Six experiments with adults and children demonstrate that these subtle differences between their meanings influence how participants organize and interrogate their visual world. In otherwise identical situations, changing the word from most to more affects preferences for picture–sentence matching (experiments 1–2), scene creation (experiments 3–4), memory for visual features (experiment 5), and accuracy on speeded truth judgments (experiment 6). These effects support the idea that the meanings of more and most are mental representations that provide detailed instructions to conceptual systems.
Read More about Linguistic meanings as cognitive instructions